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A B S T R A C T   

Background: COVID-19 is a lung disease, and there is medical evidence that air pollution is one of the external 
causes of lung diseases. Fine particulate matter is one of the air pollutants that damages pulmonary tissue. The 
combination of the coronavirus and fine particulate matter air pollution may exacerbate the coronavirus’ effect 
on human health. 
Research question: This paper considers whether the long-term concentration of fine particulate matter of 
different sizes changes the number of detected coronavirus infections and the number of COVID-19 fatalities in 
Germany. 
Study design: Data from 400 German counties for fine particulate air pollution from 2002 to 2020 are used to 
measure the long-term impact of air pollution. Kriging interpolation is applied to complement data gaps. With an 
ecological study, the correlation between average particulate matter air pollution and COVID-19 cases, as well as 
fatalities, are estimated with OLS regressions. Thereby, socioeconomic and demographic covariates are included. 
Main findings: An increase in the average long-term air pollution of 1 μg/m3 particulate matter PM2.5 is correlated 
with 199.46 (SD = 29.66) more COVID-19 cases per 100,000 inhabitants in Germany. For PM10 the respective 
increase is 52.38 (SD = 12.99) more cases per 100,000 inhabitants. The number of COVID-19 deaths were also 
positively correlated with PM2.5 and PM10 (6.18, SD = 1.44, respectively 2.11, SD = 0.71, additional COVID-19 
deaths per 100,000 inhabitants). 
Conclusion: Long-term fine particulate air pollution is suspected as causing higher numbers of COVID-19 cases. 
Higher long-term air pollution may even increase COVID-19 death rates. We find that the results of the corre-
lation analysis without controls are retained in a regression analysis with controls for relevant confounding 
factors. Nevertheless, additional epidemiological investigations are required to test the causality of particulate 
matter air pollution for COVID-19 cases and the severity.   

1. Introduction 

Environmental effects, in particular air pollution, are well-known for 
their health-relevance (Cohen et al., 2017). For this reason, statutory 
thresholds and permissible limits for pollutants are defined. The World 
Health Organization (WHO, 2006), as well as the European Union 
(European Commission n. y.) recommend or even prescribe the respec-
tive thresholds. Among others, air pollution with fine particulate matter 
is considered dangerous to health. In this respect, is known that 
long-term exposure to air pollution, especially to particulate matter with 
a diameter of 10 μm and less, PM10, as well as particulate matter with a 
diameter of less than 2.5 μm, PM2.5, may cause inflammation and many 
other changes in the body that are linked to a large number of medical 

conditions, especially lung diseases (Ciencewicki and Jaspers, 2007; 
Anderson et al., 2012; WHO, 2016; Cohen et al., 2017; Stockfelt et al., 
2017; Guo et al., 2018; Guo et al., 2019; Lelieveld et al., 2019). More-
over, air pollution has evidentely increased the risk of dying by SARS 
(severe acute respiratory syndrome) in China, for short-term as well as 
long-term exposure to particulate matter, sulphur dioxide, nitrogen di-
oxide, carbon monoxide and ozone (Cui et al., 2003). 

The new coronavirus SARS-CoV-2 is a respiratory and lung disease 
that can have severe and deadly consequences. This supports the 
assumption that the disease activated by SARS-CoV-2, COVID-19, might 
be connected in some way or other with fine particulate matter exposure 
(Woodby et al., 2020; Zhu et al., 2021; Bourdrel et al., 2021). In 
particular, long-term exposure to this air pollution seems to be the cause 
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of the negative health effects. 
There are two different mechanisms that may create a causal rela-

tionship between fine particulate air pollution and SARS-CoV-2 in-
fections. The first is that particulate matter might carry the airborne 
virus, transmitting it into the human respiratory system (Copat et al., 
2020; Martelletti and Martelletti, 2020; Di Girolamo, 2021; Nor et al., 
2021). The second is that fine particulate matter could increase the 
severity of the Covid-19 disease by delaying or complicating recovering 
(Domingo and Rovira, 2020; Leifer et al., 2021). However, it is difficult 
to distinguish between these two mechanisms, due to a lack of 
individual-related longitudinal data that are not available in the midst of 
a pandemic (Villeneuve and Goldberg, 2020). In a review paper, 
Comunian et al. (2020) analyzed the role played by ACE2 (angio-
tensin-converting enzyme 2) in the inflammation of lung cells and the 
intrusion of the coronavirus into these cells in connection with daily 
PM-concentrations, especially in Italian cities. According to Comunian 
et al. (2020), PM may therefore play a role in the transportation of the 
virus in the environment and thus in susceptibility to the virus, as well as 
the severity of the COVID-19 disease. 

In this paper, we contribute to the literature on the connection be-
tween long-term exposure to fine matter particulate air pollution and 
COVID-19, by studying this relationship empirically with county-level 
data from Germany. In this context, fine matter air pollution is 
measured in terms of long-term exposure to PM10 and PM2.5. In partic-
ular, the effect of long-term exposure to fine particulate matter on the 
number of COVID-19 infections and the number of COVID-19 fatalities 
per 100,000 inhabitants is investigated. A short-term analysis of these 
effects for Germany was presented by Isphording and Pestel (2021). In 
another study with German data, Huang and Brown (2021) provided 
evidence of an increasing COVID-19 incidence due to long-term air 
pollution with nitrogen dioxide (NO2). To the best of our knowledge, 
this present study is the first on the suspected long-term effect of PM on 
COVID-19 in Germany. 

Although the COVID-19 pandemic is a recent phenomenon, research 
related to this issue consists of a large number of papers that investigate 
the relation between COVID-19 and air pollution, and especially par-
ticulate matter pollution. The ecological studies concerning this impact 
are available for cities, regions, countries and groups of countries, as 
well as the world as a whole. However, a number of these studies 
appeared early in the pandemic when the number of observations was 
quite small. Papers on the relevance of environmental factors, including 
air pollution, for COVID-19 up to May 2020, were critically reviewed by 
Shakil et al. (2020) and up to the end of September 2020 by Ali and 
Islam (2020). Ali et al. (2021) reviewed papers on air pollution and 
COVID-19 infections and mortality from January to December 2020. An 
even more comprehensive review of papers on environmental aspects of 
COVID-19 was undertaken by Sharma et al. (2021). The conclusion of 
these reviews presented ecological and observational evidence of 
increasing effects of short-term and long-term air pollution, in particular 
PM2.5, PM10, and NO2, on COVID-19 infections and fatalities. 

Pozzer et al. (2020) studied air pollution by means of satellite data 
worldwide as a cofactor of COVID-19 mortality. The mortality data were 
obtained from epidemiologic data relating to China and the USA. In 
addition, they calculated the anthropogenic share of pollution with a 
model from atmospheric chemistry. According to this paper, about 15% 
of COVID-19 mortality globally may be attributed to air pollution in 
general. However, the range of the 95% confidence interval was large 
(7–33%) and the epidemiologic data were from the early wave of the 
disease. These results were qualitatively confirmed by Barnett-Itzhaki 
and Levi (2021) in a linear regression study on the impact of the PM2.5 
concentration on COVID-19 morbidity and mortality in 36 OECD 
countries. With Pearson correlation analysis, Lembo et al. (2021) found, 
in 33 European countries, positive connections between diverse air 
pollutants and the number of infections with and deaths from the dis-
ease. Coccia (2021) concluded from a global analysis with more than 
160 countries that beside higher health care expenditures and GDPs, 

lower exposure to ultrafine particulate matter, PM2.5, was correlated 
with lower COVID-19 infection and death rates. In order to obtain more 
precise results for a country that is much smaller, but more densely 
populated than China and the USA, we investigate PM air pollution and 
COVID-19 cases and fatalities in Germany. 

At the country level, ecological studies on the effects of fine and 
ultrafine particulate matter air pollution, PM10 and PM2.5, are available 
for several countries and regions. In this respect, China, Italy and the 
USA were studied intensely. Two Chinese studies concentrated on the 
epicenter of the outbreak of the pandemic, Wuhan, as well as Wuhan and 
Xiaogan. Yao et al. (2020a) found a positive correlation between PM10 
and PM2.5 on the CFR of COVID-19 in Wuhan on a day-by-day basis. Li 
et al. (2020) also reported positive correlations between PM10, PM2.5, 
NO2 and CO, an air quality index and COVID-19 incidence in Wuhan and 
Xiaogan for the period January 26 to February 29, 2020. Moreover, they 
also included five meteorological variables (four temperature variables 
and one for sunshine duration), whereby only temperature had an in-
fluence. In an empirical analysis with 49 Chinese cities, Yao et al. 
(2020b) referred to positive correlations between both PM10 and PM2.5 
and the CFR of COVID-19. According to their results, PM2.5 (PM10) in-
creases by 10 μm/m3 enhanced the CFR by 0.24% (0.26%). Zhu et al. 
(2020) found, for 120 Chinese cities, positive short-term associations 
concerning confirmed COVID-19 cases by considering six air pollutants. 
An increase of 10 μm/m3 of PM2.5 (PM10) was accompanied by a 2.24% 
(1.76%) increase in the number of daily cases. These results show that 
particulate matter air pollution seemingly increased both the number of 
COVID-19 cases and the CFR of the disease. With generalized additive 
models (GAMs), controlling for confounding, Zhang et al. (2021) 
analyzed the short-term impact of air pollution, in particular PM10 and 
PM2.5, on daily new confirmed cases in 235 Chinese cities. The result 
was that not only the number of new daily COVID-19 cases had been 
positively correlated with lagged short-term air pollution, but also the 
velocity of coronavirus propagation. By contrast, in our investigation, 
data include the large second wave of COVID-19 infections in Germany, 
which yields a more advanced picture of the pandemic situation in 
Germany. 

Conticini et al. (2020) clarified the medical connections between 
chronic respiratory diseases, including COVID-19, and air pollution. 
Since the provinces of Lombardy and Emilia Romagna in Northern Italy 
were heavily polluted areas and exhibit high COVID-19 lethality, air 
pollution may be a contributing factor for the latter. This was confirmed 
for Northern Italy by Martelletti and Martelletti (2020) for high levels of 
PM10 and P2.5 pollution. Moreover, Frontera et al. (2020) reported 
correlations between PM2.5 and NO2 concentrations and intensive-care 
admissions and deaths of COVID-19 patients in Italian regions. Fattor-
ini and Regoli (2020) emphasized the importance of long-term air 
quality for respiratory diseases like COVID-19. With data for the last four 
years, they found evidence of positive correlations of high concentra-
tions of PM10, PM2.5, NO2 and O3 on COVID-19 cases in 71 Italian 
provinces. Indications of particulate matter pollution as a carrier of the 
SARS-CoV-2 virus was found by Di Girolamo (2021) for Northern Italy 
using satellite data and a microphysical model. The latter was applied to 
model the transmission of the virus by air. Again, high levels of corre-
lation (larger than 0.80) prevailed between the concentration of PM10 
with COVID-19 cases and CFR. However, in a systematic literature re-
view, Maleki et al. (2021) did not confirm that particulate matter 
pollution reinforces the transmission of SARS-CoV-2. The role of mete-
orological variables in the transmission of the virus is still unclear; and 
their potential effects were studied by Zhao et al. (2021). 

Investigating the relationship between air pollution with nitrogen 
dioxide and COVID-19 mortality in the northern Italian regions of 
Veneto and Emilia-Romagna, Filippini et al. (2021) detected a positive 
correlation. By considering Italian cities with high daily levels of PM 
concentration during the months before the virus spread, Comunian 
et al. (2020) demonstrated a positive correlation between PM concen-
tration and an enzyme receptor that was related to the lung 
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inflammation process with the virus. They used satellite data for the 
nitrogen dioxide (NO2) concentration and applied a multivariate nega-
tive binomial regression model as, for instance, recommended by Vil-
leneuve and Goldberg (2020) for such ecological studies. For the same 
pollutant, NO2, Ogen (2020) analyzed the impact on COVID-19 fatality 
in 66 regions from Italy, Spain, France and Germany. The results showed 
that 78% of the fatality cases were found in only five regions in Italy and 
Spain with the highest concentration levels of the pollutant and with an 
airflow that prevented its dispersion. In our study, we do not concentrate 
on specific German regions, but include data from the entire country, at 
the level of counties. This is the smallest administrative unit for which 
data are available in Germany. 

Hospitalization risks among COVID-19 infected persons, in combi-
nation with individual-level health characteristics and local exposure to 
PM2.5 over a year, were considered in a U.S. study by Bowe et al. (2021). 
An increase of PM2.5 by 1.9 μg/m3 correlated with a 10% higher risk of 
hospitalization. In a comprehensive study with more than 3000 counties 
in the USA, Wu et al. (2020) investigated the connection between the 
long-term average PM2.5 exposure and COVID-19 deaths with 
county-level data. In their empirical ecological regression analysis, they 
included 20 potential confounding variables. According to the results, 
even an increase of 1 μg/m3 in the PM2.5 concentration brought about an 
8% increase in the COVID-19 death rate. Also applying an ecological 
regression analysis with a zero-inflated negative binomial model and by 
controlling for spatial trends and potential confounders, Liang et al. 
(2020) detected a positive relationship between U.S. county-level NO2 
long-term exposure and COVID-19 CFR and the mortality rate, but only a 
marginal effect of PM2.5 and O3 (ozone). The studies of Wu et al. (2020) 
and Liang et al. (2020) are not only interesting because of their results, 
but also because of the methods they apply. The studies employed 
(zero-inflated) negative binomial regression analysis and control for 
potential confounders with several variables. The paper of Persico and 
Johnson (2021) is also interesting from a methodological point of view. 
They applied difference-in-differences estimations based on a change in 
the U.S. Environmental Protection Agency (EPA) enforcement policy. 
The roll-back of enforcement increased pollution and this effect was 
used to estimate its effect on the number of COVID-19 cases and deaths. 
An 11.8% increase in pollution was followed by an increase of COVID-19 
cases (deaths) by 53% (10.6%). Another aspect of the connection be-
tween air pollution and COVID-19 was shown for the USA by Chakra-
borty (2021). A multivariate regression analysis demonstrated that air 
pollution was positively correlated in counties with higher population 
proportions of socioeconomically deprived and non-Hispanic black 
people, as were COVID-19 cases and deaths. In a study with data from 
San Francisco, California, the air pollutants from wildfires were used by 
Meo et al. (2020) to estimate the effects of PM2.5 and carbon monoxide 
(CO) on daily cases and deaths, as well as cumulative cases and deaths. 
For PM2.5, a positive effect on daily and cumulative cases of COVID-19 
and on cumulative deaths was indeed found. In contrast, a study with 
1128 COVID-19 patients of the hospitals and clinics of the University of 
Cincinnati, USA, Mendy et al. (2021) applied logistic regression to 
investigate the association between PM2.5 pollution and patient hospi-
talization. Thereby, they used local exposure to PM2.5 and controlled for 
comorbidities and socioeconomic factors. As a result, only those patients 
who suffered from asthma or chronic obstructive pulmonary disease 
(COPD) yielded hospitalization probabilities that were 62% higher with 
1 μg/m3 in long-term average PM2.5 exposure. This result stresses the 
need for individual-based studies to find clear causal evidence of the 
effects of air pollution in COVID-19 patients. Since Germany is much 
smaller than the USA, the number of counties is also much smaller. This 
may be an advantage over the USA regarding ecological studies at the 
county level, as the counties themselves are smaller, and therefore, the 
within-county variability is also smaller. In addition, in our investigation 
we control for spillover-effects that exceed the county level by 
state-level fixed effects. 

Travaglio et al. (2020) studied the relationship between air pollution 

in England, and COVID-19 cases and deaths at regional and subregional 
levels. They found evidence of correlation between poor air quality and 
both cases and deaths rates of COVID-19, adjusted by population den-
sity. Especially fine particulate matter was linked to increased infec-
tivity. Stieb et al. (2020) documented a positive relation between 
long-term exposure to PM2.5 and COVID-19 incidence in 111 Canadian 
health regions. They used negative binomial regression models and 
controlled for health-related and sociodemographic variables at the 
level of the respective regions. Their ecological approach was criticized 
by Villeneuve and Goldberg (2020, 2021), but justified by Stieb et al. 
(2021). As stated above, in contrast to studies from very large countries 
such as the USA, China and Canada, the smaller Germany and its 
counties are exploited in our study. 

Marquès et al. (2021) studied air pollution effects on COVID-19 in 
the Tarragona province in Catalonia (Spain). They divided the province 
into an urban/industrial and an agricultural/rural part. Infections and 
mortality had been higher in the urban/industrial area than in the other 
part of the province, which was probably related to the respective 
exposure to PM10, NO2 and O3. Further ecological evidence for the as-
sociation between fine particulate matter air pollution and COVID-19 
was documented for Latin America and the Caribbean (Bolaño-Ortiz 
et al., 2020). 

In a study with German county-level data, Isphording and Pestel 
(2021) investigated the short-term impact of air pollution due to PM10 
and O3 on COVID-19 cases and deaths. In their empirical analysis, they 
controlled for local weather conditions, as well as for other confounding 
variables. They found short-term significant air quality effects on the 
fatality of COVID-19 patients, in particular for those older than 80. 
Moreover, air pollution was also correlated with the confirmed 
COVID-19 cases. By contrast, our study is about the long-term effects of 
PM air pollution on cases and fatalities related to COVID-19. Our 
investigation can be seen as a complement to the short-term study of 
Isphording and Pestel (2021). 

To sum up, air pollution and particulate matter concentration in 
particular, evidently increased the number of COVID-19 infections, as 
well as the fatality rate. In a recent review of relevant papers, Becchetti 
et al. (2021) concluded that there was “huge”, as well as strong and 
robust evidence of air quality playing a role in COVID-19 outcomes. 
Although the short-term variation of the pollutant concentration may 
play a certain role, long-term exposure to the pollutants seems to be 
more important, particularly from a public health and public policy 
perspective. The short-term concentration of particulate matter depends 
on the weather conditions and on other rather random effects. 
Long-term exposure to pollutants may be much more damaging to health 
as they put particular stress on the human body. Therefore, the focus of 
this paper is on long-term exposure to particulate matter and the asso-
ciated number of COVID-19 cases and mortality in Germany. It com-
plements the short-term empirical analysis of Isphording and Pestel 
(2021). Since this paper is also an ecological regression study, the lim-
itations of such studies documented above must be taken into consid-
eration when interpreting the results. 

2. Materials and methods 

2.1. Data and data preparation 

The analysis is based on German data at the county level. From the 
available site data, the so-called background concentration was chosen. 
Particulate matter data is available from the German Federal Environ-
mental Agency (Umweltbundesamt, 2021). The number of counties with 
measured concentration values was restricted by the measuring station 
network organized by the states (Bundesländer). Whereas PM10 data 
were available for the years 2002–2020, PM2.5 concentration was 
measured for 2010 to 2020 only. The average concentration in micro-
grams per cubic meter, μg/m3, over this period was the main indepen-
dent variable in the estimations below. 

A.L. Prinz and D.J. Richter                                                                                                                                                                                                                   



Environmental Research 204 (2022) 111948

4

As dependent variables, the number of confirmed COVID-19 cases 
per 100,000 inhabitants and the number COVID-19 deaths per 100,000 
inhabitants, both as of February 22, 2021, were used. They were also 
available at the county-level, provided daily by the Robert Koch Institute 
(RKI 2021). 

As confounding variables, the distances to several locations seem 
worth considering. The distance in kilometers from a county to Ischgl in 
Austria, where one of the greatest outbreaks of the virus was observed 
(Felbermayr et al., 2020), defined the respective variable. In addition, 
there were three virus hotspots in Germany when COVID-19 broke out in 
2020: the city of Hamburg in Northern Germany, the county of Starn-
berg in Southern Bavaria and the counties of Heinsberg in North Rhine 
Westphalia (Felbermayr et al., 2020). The distance in kilometers of the 
nearest respective county to one of these German hotspots defined the 
hotspot variable. 

As demographic variables, the population density (RKI 2021), the 
proportion of people over 75 years of age (Statistische Ämter, 2021 a) 
and the (net) commuter flow (Statistische Ämter, 2021 a) were applied 
in the estimations below (see e.g. Sarmadi et al., 2021 for sociodemo-
graphic variables in ecological studies on air quality and COVID-19). 
The proportion of one over 75 years of age was measured as decimal 
values, and the population density as inhabitants per square kilometers. 
The net commuter flow (the number of ingoing commuters minus out-
going commuters) accounted for the transmission of the virus between 
homes and workplaces. Since commuter flow (cf) and population den-
sity (pd) are highly correlated, the variable commuter flow (cf) was 
represented in the estimations below by the residuals of the auxiliary 
regression: cf = constant + beta∙cf, to avoid multicollinearity. 

In addition, the number of nursing home spots per 100,000 people 
older than 75 years (Statistische Ämter, 2021 a), long-term available 
income per inhabitant in 1000 Euros, based on the years 2002–2018 
(Statistische Ämter, 2021 b), a dummy variable for East Germany and a 
dummy variable for counties bordering on the Czech Republic were 
included as confounding variables (for border regulations between 
Czechia and Saxony, see ElbeLabe, 2021). 

2.2. Statistical analysis 

Considering counties with particulate matter recording stations only, 
would yield 248 counties with PM10 long-term concentration and 109 
counties with PM2.5 long-term concentration. To expand the data basis, 
a so-called Kriging-interpolation (see Oliver, 1990, for this method) was 
used to calculate concentrations for counties without particulate matter 
recording stations. With this method, nearby measured weighted values 
were used to predict values at locations with no recording station. To 
determine the weighting, the distance to the measured points, as well as 
their autocorrelations, were applied (ArcGIS, 2021). With this method, 
400 counties were included in the estimations below.1 

Firstly, we applied OLS regressions for both PM10 and PM2.5. Sec-
ondly, we used a fixed effect model, in which the fixed effects are the 
German states (Bundesländer). Finally, we calculated standardized 
estimation coefficients. All estimations are run with heteroscedasticity 
robust standard errors. 

3. Results 

3.1. Particulate matter concentration and COVID-19 cases 

Applying the Kriging-interpolation, Figs. 1 and 2 show the PM10 or 
PM2.5 concentration with data including interpolated values. 

The first part of the investigation is about the potential impact of 
PM10 and PM2.5 concentration on the number of confirmed COVID-19 
cases, shown in Fig. 3. The results of the OLS-regressions are pre-
sented in Table 1 for PM10 and Table 2 for PM2.5. All regressions were 
run including the confounding variables, presented in Section 2.1. In the 
first column, both tables contain the regressors, and in the second col-
umn the results of the basic model without fixed effects. In the third 

Fig. 1. Concentration of PM 10 in Germany (2010–2020). Source: Umweltbundesamt (2021), own calculations.  

1 The county of Göttingen was not included in the estimations, due to a local 
government reform in 2016, when the former counties of Göttingen and 
Osterode am Harz merged. The new county was named Göttingen. 
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column, the standardized coefficients of the estimation of the basic 
model are shown. Similarly, in the fourth column, the estimation results 
for the model with state (Bundesländer) fixed effects are presented. The 
respective standardized coefficients for this estimation are shown in the 
fifth column of the tables. Note that for both particulate matter con-
centrations, the values for the respective particulate matter 

concentration are Kriging-interpolated for those counties without their 
own PM-recording stations. The same estimations as in Tables 1 and 2, 
but without Kriging-Interpolation, are presented in the Appendix, 
Tables A1 and A2. 

According to Tables 1 and 2, the fine particulate matter concentra-
tion PM10 and PM2.5 were statistically highly significantly positively 

Fig. 2. Concentration of PM 2.5 in Germany (2010–2020). Source: Umweltbundesamt (2021), own calculations.  

Fig. 3. Confirmed COVID-19 cases per 100,000 inhabitants in Germany. Source: Data from Robert Koch Institute, RKI 2021.  
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correlated with COVID-19 cases in German counties. The standardized 
coefficient of the estimations showed that the correlation is relatively 
strong. For instance, for both particulate matter concentrations, the 
standardized effect was of comparable size with the effect of population 
density: 0.1690 for PM10, in comparison to 0.2033 for population den-
sity, and 0.2753 for PM2.5, in comparison to 0.1869 for population 
density. These results were robust, as shown by the estimations with 
state fixed effects in Tables 1 and 2 They were also robust if a negative 
binomial model (not shown here) is applied. Interestingly, the popula-
tion share of people older than 75 years did not correlate statistically 
significantly with COVID-19 cases in Germany. By contrast, the relative 
number of nursing home places for the respective age group was 
significantly and positively correlated with German COVID-19 cases, but 
only in the model with state fixed effects. Moreover, the positive (and 
statistically significant) correlations of the distance to the nearest 
German hotspot, population density and border region with the Czech 
Republic with the number of German COVID-19 cases was straightfor-
ward and depends on the characteristics of this highly contagious virus. 
Moreover, in the basic model, people living in East Germany – in com-
parison to West Germany – had a higher risk of infection by the virus. 

The negative (and statistically significant) correlation of the distance 
to the first Austrian COVID-19 skiing hotspot Ischgl, seems to result from 
the fact that it was one of the first origins of COVID-19 cases in Germany. 
In addition, its effect on the number of cases declined over time, so that 

the effect became negative in the end when other regions caught up. 
Although the commuter flow was expected to have a positive correlation 
with the COVID-19 cases, the effect was statistically significantly 
negative, but small. The county-level income, averaged over 2002 to 
2018, was not statistically significantly correlated with COVID-19 cases. 
These results indicate that there may be a connection between long-term 
exposure to fine particulate matter, PM10 and PM2.5, and the number of 
COVID-19 cases. 

3.2. Particulate matter concentration and COVID-19 mortality 

Although the number of COVID-19 cases and the number of COVID- 
19-related deaths correlated with each other, a specific analysis of the 
relationship between long-term exposure to particulate matter and the 
COVID-19 death rate was required, as the severity of the disease might 
be more sensitive to long-term PM10 and PM2.5 concentration than the 
number of infections. COVID-19-related deaths are shown in Fig. 4. 

The estimation results are presented in Table 3 for PM10 and in 
Table 4 for PM2.5. All regressions were run including the confounding 
variables, presented in Section 2.1. The structure of Tables 3 and 4 is the 
same as in Tables 1 and 2. Columns 2 and 3 contain the estimated and 
standardized values of the basic model, Columns 4 and 5 the respective 
values for the estimation with state fixed effects. Note that Tables 3 and 

Table 1 
COVID-19 cases per 100,000 inhabitants and Kriging-interpolated PM10 
pollution.  

Variable Basic Model Standardized 
Coefficients 

State Fixed 
Effects 
Model 

Standardized 
Coefficients 

Distance to 
Ischgl 

−1.892*** 
(0.212) 

−0.4349298 −1.802*** 
(0.465) 

−0.4141894 

Distance to 
nearest 
German 
hotspot 

1.782*** 
(0.534) 

0.1530381 1.955*** 
(0.806) 

0.1679186 

Nursing home 
places per 
100 k 
inhabitants 
at 75 and 
older 

0.017 
(0.022) 

0.03517896 0.047** 
(0.021) 

0.09850678 

Share of 
people >75 
years 

3709.915 
(3662.871) 

0.0668369 1551.690 
(6706.982) 

0.02795485 

Population 
density 

0.275*** 
(0.049) 

0.2033308 0.167*** 
(0.056) 

0.1234201 

Commuter 
flow 
(modified) 

−0.004*** 
(0.001) 

−0.09751138 −0.003** 
(0.001) 

−0.0743129 

Avg. PM10, 
2002 to 
2020 

52.381*** 
(12.999) 

0.1689943 36.080*** 
(8.643) 

0.1164028 

Avg. Income 
2002 to 
2018 

4.772 
(20.297) 

0.01166486 10.994 
(26.832) 

0.02687409 

East Germany 544.945*** 
(166.363) 

0.2241532   

Border with 
Czech 
Republic 

1900.803*** 
(262.786) 

0.3644518 1422.722*** 
(94.377) 

0.2727866 

Constant 1600.346** 
(709.202)    

Fixed effects No  Yes  
Observations 400  400  
Adj. R2 0.463  0.145  
F Statistic 35.406*** 

(df = 10; 
389)  

10.166*** 
(df = 9; 375)  

*, **, ***: p < 0.1, 0.05, 0.01, respectively. - 
Source: Own calculations. 

Table 2 
COVID-19 cases per 100,000 inhabitants and Kriging-interpolated PM2.5 
pollution.  

Variable Basic Model Standardized 
Coefficients 

State Fixed 
Effects 
Model 

Standardized 
Coefficients 

Distance to 
Ischgl 

−2.019 
*** 
(0.198) 

−0.4642156 −1.756*** 
(0.386) 

−0.4035886 

Distance to 
nearest 
German 
hotspot 

1.961*** 
(0.503) 

0.1683947 2.023 
*** 
(0.696) 

0.1737094 

Nursing home 
places per 
100 k 
inhabitants 
at 75 and 
older 

0.023 
(0.020) 

0.04905546 0.043** 
(0.017) 

0.09084879 

Share of 
people >75 
years 

2410.773 
(3279.293) 

0.04343189 1230.704 
(6004.623) 

0.02217206 

Population 
density 

0.253*** 
(0.049) 

0.1868741 0.164*** 
(0.063) 

0.1216532 

Commuter 
flow 
(modified) 

−0.003** 
(0.002) 

−0.0796416 −0.003** 
(0.001) 

−0.07579911 

Avg. PM2.5, 
2010 to 
2020 

199.455*** 
(29.657) 

0.275265 130.951** 
(62.119) 

0.1807226 

Avg. Income 
2002 to 
2018 

9.131 
(19.392) 

0.02232083 7.857 
(26.119) 

0.01920682 

East Germany 491.772*** 
(157.385) 

0.2022812   

Border with 
Czech 
Republic 

1724.710*** 
(227.283) 

0.3306886 1343.385*** 
(90.305) 

0.2575749 

Constant 351.632 
(701.009)    

Fixed effects No  Yes  
Observations 400  400  
Adj. R2 0.505  0.166  
F Statistic 41.674*** 

(df = 10; 
389)  

11.502 
(df = 9; 375)  

*, **, ***: p < 0.1, 0.05, 0.01, respectively. - 
Source: Own calculations. 
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4 encompass all counties, whereby missing values of fine particulate 
matter are Kriging-interpolated. Estimations with recorded values only 
are presented in Tables A3 and A4 in the Appendix. 

According to the basic model in Tables 3 and 4, PM10 and PM2.5 were 
statistically significantly and positively correlated with the number of 
COVID-19 mortality in Germany. As with COVID-19 cases, East Ger-
many suffered from a higher burden of COVID-19 fatalities than the 
western part of the country. However, the particulate matter correlation 
with COVID-19 mortality was not robust to controlling for state-level 
fixed effects. In addition to the variables that already correlated with 
COVID-19 cases, the number of nursing home places for elderly people 
statistically significantly and positively correlated with the number of 
COVID-19 fatalities. The effect sizes of these determinants was 
substantial. 

An issue with these estimations was that the number of COVID-19 
cases and fatalities correlated. Therefore, in the estimations of Ta-
bles 5 and 6, the number of COVID-19 cases was included as a regressor. 
Note that Tables 5 and 6 encompass all counties, whereby missing values 
of fine particulate matter concentration are Kriging-interpolated. Esti-
mations with recorded values only are presented in Tables A5 and A6 in 
the Appendix. 

Although the number of COVID-19 cases and the concentration of 
fine particulate matter had been correlated, the correlation (about 0.21) 
did not disturb the estimation. The latter also held true for the remaining 
regressors. The estimations demonstrate that there was no correlation 
between the concentration of PM10 and PM2.5 (there was only one 
estimated PM2.5 value that was statistically significant at the 10% error 
level in Table 6, but it had a negative sign) and COVID-19 fatalities over 
and above the effect of fine particulate matter concentration on the 
number of COVID-19 cases. 

4. Discussion 

This paper is essentially ecological in approach. There is a mecha-
nism that combines the SARS-CoV-2 virus with detrimental effects for 

the human respiratory system and the immune system at the 
microscopic-level of the human body. The same applies to particulate 
matter air pollution, although it cannot be stated that these effects are 
also observable in events at the macroscopic level (Anjum and Mumford, 
2018, p. 110), but the known mechanism renders such effects at least 
plausible. 

As with all ecological studies, the criticism of Villeneuve and Gold-
berg (2020) is relevant for this paper too. They draw attention to the 
methodological shortcomings and constraints of ecological studies on 
the connection between fine particulate matter and COVID-19. As they 
pointed out, the main shortcomings are (see also Goldberg and Ville-
neuve, 2021):  

(a) cross-level bias (ecological fallacy) due to using regional-level 
fine particulate matter (PM) pollution data as proxies for un-
available individual-level exposures to PM,  

(b) underreporting health outcomes, i.e., COVID-19 cases and 
deaths,  

(c) lack of highly-resolution measurements of spatial air pollution,  
(d) inadequate control for confounding,  
(e) ignorance of the regional variation in the timing and temporal 

changes of the pandemic with respect to at-risk populations. 

Although some of these shortcomings may be eliminated or allevi-
ated (for instance, control for confounding or the resolution of spatial air 
pollution), it is not possible to provide clear-cut evidence of the causality 
of PM in the transmission of the coronavirus and the severity of COVID- 
19. In the meantime, ecological studies using regression analysis may be 
the only sources of empirical evidence of these effects (Wu et al., 2020). 
Ecological studies cannot prove their case, but they can nevertheless 
provide exploratory evidence of the hypothesis that the respective ef-
fects do indeed exist (Stieb et al., 2021). Of course, individual studies are 
indispensable for deciding whether the hypothesis can be confirmed. 
Robotto et al. (2021) proposed standardized methods for indoor and 
outdoor air sampling that could be applied by respective studies. 

Fig. 4. COVID-19 deaths per 100,000 inhabitants in Germany. Source: Data from Robert Koch Institute, RKI 2021.  
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However, data for such studies is not currently available, and probably 
will not be for a long time. Moreover, potential underreporting of health 
outcomes is also an unsolvable issue for this paper. 

Nevertheless, criticisms (c), (d) and (e) were accounted for in this 
study. Although satellite data was not at our disposal, Kriging interpo-
lation, a widely used approach in geographical information systems, was 
used to extend the available air pollution data to cover all of Germany. In 
addition, averaging data over a longer period is considered as a proxy 
variable for long-term exposure to air pollution for the respective pop-
ulation. However, this is no substitute for individual-level exposure data 
that is required for causal analysis. 

Air pollution with fine and ultrafine particulate matter was found in 
a correlation analysis, as related to COVID-19 cases and fatalities in 
Germany. To test this connection more thoroughly, we incorporated 
several relevant covariates into the regression analysis to control for 
confounding. The selection of data was driven by an attempt to control 
for long-term, as well as short-term confounding variables. 

First of all, three coronavirus-related variables were included as 
covariates in the estimations:  

• the distance to the Austrian ski resort, Ischgl, that was one of the first 
hotspots of German COVID-19 cases when holiday makers returned 
from skiing holidays there (Felbermayr et al., 2020),  

• the distances to German COVID-19 hotspots, for instance Heinsberg, 
where carnival celebrations had been superspreader events (Felber-
mayr et al., 2020) and  

• dummy variables for counties at the border to the Czech Republic 
that was heavily hit by SARS-CoV-2 (ElbeLabe, 2021). 

In estimations for Germany, two variables are important indicators 
of socioeconomic differences:  

• a dummy variable for East Germany, as this part of the country still 
lags behind West Germany with respect to its socioeconomic devel-
opment and  

• disposable income at the county-level. As with the air pollution 
variable, disposable income was averaged over 2002 to 2008, in 
order to control for long-term income. 

As soon became clear just after the beginning of the COVID-19 
pandemic, older people had a considerably higher risk of coming 
down with COVID-19 and to dying from the disease, in particular 
because more of this age cohort live in nursing homes and suffer from 
comorbidities (Barnett and Grabowski, 2020). To control for this specific 
situation, the following covariates (all at the county-level) were 
included in the estimations:  

• the share of people 75 years and older and  
• the number of nursing home places per 100,000 inhabitants for 

people 75 years and older. 

Table 3 
COVID-19 mortality per 100,000 inhabitants and Kriging-interpolated PM10 
pollution.  

Variable Basic 
Model 

Standardized 
Coefficients 

State Fixed 
Effects 
Model 

Standardized 
Coefficients 

Distance to 
Ischgl 

−0.071*** 
(0.009) 

−0.316617 −0.042 
(0.030) 

−0.1883841 

Distance to 
nearest 
German 
hotspot 

0.139*** 
(0.026) 

0.2328296 0.130*** 
(0.037) 

0.2178253 

Nursing home 
places per 
100 k 
inhabitants 
at 75 and 
older 

0.003*** 
(0.001) 

0.133083 0.004*** 
(0.001) 

0.1687632 

Share of people 
>75 years 

753.997*** 
(156.552) 

0.2647978 706.861*** 
(213.657) 

0.2482438 

Population 
density 

0.006** 
(0.003) 

0.09350062 0.004* 
(0.002) 

0.059609 

Commuter 
flow 
(modified) 

−0.0002** 
(0.0001) 

−0.1037025 −0.0002*** 
(0.0001) 

−0.1017682 

Avg. PM10, 
2002 to 2020 

2.108*** 
(0.714) 

0.1325954 1.211 
(1.037) 

0.07614606 

Avg. Income 
2002 to 2018 

0.324 
(0.958) 

0.01543386 0.360 
(1.059 

0.01717202 

East Germany 23.729*** 
(7.973) 

0.1902687   

Border with 
Czech 
Republic 

81.108*** 
(18.424) 

0.3031498 63.000*** 
(9.778) 

0.2354696 

Constant −75.135** 
(34.165)    

Fixed effects No  Yes  
Observations 400  400  
Adj. R2 0.477  0.204  
F Statistic 37.443*** 

(df = 10; 
389)  

14.026*** 
(df = 9; 375)  

*, **, ***: p < 0.1, 0.05, 0.01, respectively. - 
Source: Own calculations. 

Table 4 
COVID-19 mortality per 100,000 inhabitants and Kriging-interpolated PM2.5 
pollution.  

Variable Basic Model Standardized 
Coefficients 

State Fixed 
Effects 
Model 

Standardized 
Coefficients 

Distance to 
Ischgl 

−0.074*** 
(0.009) 

−0.3329968 −0.038 
(0.031) 

−0.1701805 

Distance to 
nearest 
German 
hotspot 

0.147*** 
(0.0256) 

0.2459477 0.133*** 
(0.041) 

0.2226709 

Nursing home 
places per 
100 k 
inhabitants 
at 75 and 
older 

0.003*** 
(0.001) 

0.1405996 0.004*** 
(0.001) 

0.1639519 

Share of 
people >75 
years 

693.680*** 
(153.798) 

0.2436149 688.833*** 
(209.357) 

0.2419125 

Population 
density 

0.006** 
(0.002) 

0.09066316 0.004* 
(0.002) 

0.06479335 

Commuter 
flow 
(modified) 

−0.0002* 
(0.0001) 

−0.0940145 −0.0002** 
(0.0001) 

−0.1027767 

Avg. PM2.5, 
2010 to 
2020 

6.177*** 
(1.439) 

0.1661786 2.929 
(2.361) 

0.07879814 

Avg. Income 
2002 to 
2018 

0.418 
(1.015) 

0.01992261 0.229 
(1.255) 

0.0109199 

East Germany 22.477*** 
(7.853) 

0.1802286   

Border with 
Czech 
Republic 

74.894*** 
(19.248) 

0.2832652 58.734*** 
(19.248) 

0.2277068 

Constant −102.044*** 
(36.664)    

Fixed effects No  Yes  
Observations 400  400  
Adj. R2 0.486  0.203  
F Statistic 38.736*** 

(df = 10; 
389)  

131.428*** 
(df = 9; 
375)  

*, **, ***: p < 0.1, 0.05, 0.01, respectively. - 
Source: Own calculations. 
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As further demographic variables.  

• population density and  
• commuter flows 

were included in the estimations. A higher population density cor-
relates with higher infection risks (Wong and Li, 2020) and commuter 
flows may propagate the virus between counties (Mitze and Kosfeld, 
2021). 

Nevertheless, due to unavailability, health variables at the county- 
level are missing, although they are potentially confounding variables 
(Sarmadi et al., 2021). Since we controlled for the population share of 
older people, the morbidity of these people was indirectly included in 
the estimations. 

A further limitation that restricts the explanatory power of all 
ecological studies concerning COVID-19 is the unknown number of 
asymptomatic cases. Those who are asymptomatically infected are 
generally younger, but may show CT abnormalities, and are contagious 
(Kronbichler et al., 2020). Therefore, estimations of the relationship 
between air pollution and COVID-19 may be biased by the unknown 
county-distribution of asymptomatic cases. 

In an alternative estimation model in Section 3, state-level fixed ef-
fects were included. Germany consists of 16 federal states (called 
‘Bundesländer’), that are further subdivided into counties. To control for 
potential air pollution and COVID-19 externalities between counties in a 
federal state, a state-level fixed effects model was estimated. With both 
air pollution variables PM2.5 and PM10, the estimated coefficients with 
respect to COVID-19 infection cases became smaller, but remained sta-
tistically significant. This means that the correlation between fine par-
ticulate matter air pollution and infections was robust for these controls. 
However, this was different for estimations of the correlation between 
fine particulate matter air pollution and COVID-19 deaths. Controlling 
for state-level fixed effects, the estimated coefficients lost their statistical 
significance. Hence, the latter effect was not robust to state-level con-
trols. Therefore, it is difficult to say whether particulate matter pollution 
increased COVID-19 fatalities. Further investigations are required to 
resolve this issue. 

To include all German counties (with one exception) in the empirical 
analysis, Kriging interpolation was used. Missing air pollution values 
were interpolated with this method because satellite data were not 
available. To determine whether this may create bias in the estimations, 
estimations only for those counties with measuring stations are shown in 

Table 5 
COVID-19 mortality per 100,000 inhabitants and Kriging-interpolated PM10 
pollution (including COVID-19 cases).  

Variable Basic Model Standardized 
Coefficients 

State Fixed 
Effects 
Model 

Standardized 
Coefficients 

Covid-19 
cases per 
100 k 
inhabitants 

0.036*** 
(0.002) 

0.7038624 0.036*** 
(0.003) 

0.7074111 

Distance to 
Ischgl 

−0.002 
(0.008) 

−0.01048626 0.023 
(0.031) 

0.1046181 

Distance to 
nearest 
German 
hotspot 

0.075*** 
(0.019) 

0.1251119 0.059 
(0.037) 

0.09903778 

Nursing home 
places per 
100 k 
inhabitants 
at 75 and 
older 

0.003*** 
(0.001) 

0.1083218 0.002*** 
(0.004) 

0.09907837 

Share of 
people >75 
years 

620.042*** 
(107.581) 

0.2177538 650.551*** 
(120.058) 

0.2284682 

Population 
density 

−0.003** 
(0.002) 

−0.04961626 −0.002 
(0.001) 

−0.02769972 

Commuter 
flow 
(modified) 

−0.0001 
(0.00005) 

−0.03506787 −0.0001** 
(0.00004) 

−0.04919842 

Avg. PM10, 
2002 to 
2020 

0.217 
(0.550) 

0.01364661 −0.099 
(0.924) 

−0.006198567 

Avg. Income 
2002 to 
2018 

0.152 
(0.925) 

0.007223405 −0.039 
(1.173) 

−0.00183901 

East Germany 4.053 
(5.231) 

0.03249576   

Border with 
Czech 
Republic 

12.475 
(13.439) 

0.04662592 11.370 
(8.967) 

0.04249736 

Constant −132.919*** 
(28.727)    

Fixed effects No  Yes  
Observations 400  400  
Adj. R2 0.743  0.569  
F Statistic 105.713*** 

(df = 11; 
388)  

55.165*** 
(df = 10; 
374)  

*, **, ***: p < 0.1, 0.05, 0.01, respectively. - 
Source: Own calculations. 

Table 6 
COVID-19 mortality per 100,000 inhabitants and Kriging-interpolated PM2.5 
pollution (including COVID-19 cases).  

Variable Basic Model Standardized 
Coefficients 

State Fixed 
Effects 
Model 

Standardized 
Coefficients 

Covid-19 
cases per 
100 k 
inhabitants 

0.037*** 
(0.002) 

0.7217954 0.037*** 
(0.003) 

0.7201644 

Distance to 
Ischgl 

0.0005 
(0.008) 

0.002071874 0.027 
(0.029) 

0.1204697 

Distance to 
nearest 
German 
hotspot 

0.074*** 
(0.019) 

0.1244012 0.058* 
(0.035) 

0.09757158 

Nursing home 
places per 
100 k 
inhabitants 
at 75 and 
older 

0.003*** 
(0.001) 

0.1051916 0.002*** 
(0.0005) 

0.09852581 

Share of 
people >75 
years 

604.416*** 
(106.596) 

0.212266 643.366*** 
(117.721) 

0.2259449 

Population 
density 

−0.003** 
(0.002) 

−0.04422172 −0.002 
(0.001) 

−0.02281696 

Commuter 
flow 
(modified) 

−0.0001 
(0.00004) 

−0.03652956 −0.0001** 
(0.00004) 

−0.04818884 

Avg. PM2.5, 
2010 to 
2020 

−1.208 
(1.032) 

−0.03250641 −1.909* 
(0.924) 

−0.05135185 

Avg. Income 
2002 to 
2018 

0.080 
(0.910) 

0.003811532 −0.061 
(1.104) 

−0.00291217 

East Germany 4.268 
(5.201) 

0.03422297   

Border with 
Czech 
Republic 

11.926 
(13.431) 

0.04457573 11.293 
(8.684) 

0.04221049 

Constant −115.064*** 
(28.727)    

Fixed effects No  Yes  
Observations 400  400  
Adj. R2 0.743  0.572  
F Statistic 106.082*** 

(df = 11; 
388)  

55.773*** 
(df = 10; 
374)  

*, **, ***: p < 0.1, 0.05, 0.01, respectively. - 
Source: Own calculations. 
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the Appendix. The outcome was that the results with Kriging in-
terpolations did not differ much from those with only original data (and, 
hence, a smaller number of included counties). The only exception was 
the estimation of long-term PM2.5 air pollution on COVID-19 fatalities. 
These estimations were statistically insignificant, probably due to the 
relatively small number of measuring stations. 

To render the interpretation of the estimated coefficient more 
convenient, standardized coefficients were calculated and presented in 
the tables in Section 3. Standardized coefficients reveal the strength of 
an effect in relation to the standard deviation of the variable. In multiple 
regression analysis, this renders it possible to compare effect sizes 
among the estimated coefficients. 

Of course, the results presented in this paper cannot be interpreted as 
causal effects. As indicated above, there are also some limitations of this 
paper from an ecological viewpoint:  

• there are data gaps, as not all German counties have measuring 
stations for particulate matter air pollution and  

• there is no data on the distribution of other diseases in the counties. 

Nevertheless, the results of the empirical analysis in this paper pro-
vide some exploratory indications of a connection between fine partic-
ulate air pollution and COVID-19 infections and – to a lesser extent – 

COVID-19 fatalities in Germany. Nevertheless, there might be an indi-
rect effect of fine particulate matter concentration on COVID-19 fatal-
ities via the number of COVID-19 cases. Accordingly, one could argue 
that COVID-19 cases are a mediator variable for the transmission of fine 
particulate matter pollution on COVID-19 fatalities. 

5. Conclusion 

Long-term exposure to fine particulate air pollution correlates with 
COVID-19 infections and – to a lesser extent – to COVID-19 fatalities in 
Germany. These results for Germany provide a further piece in the 
global puzzle of the connections of air pollution and diseases in general, 
as well as COVID-19 in particular. The county-level seems to be inter-
nationally the lowest administrative level for which data is available. 
The next small step in ecological research may be to apply satellite data 
to measure air pollution much more precisely than with data from 
measuring stations. The next big step, however, would entail in-
vestigations with data at the individual exposure with fine particulate 
matter and other sources of air pollution, in order to explore whether 
and to what extent air pollution is a causal factor for diseases like 
COVID-19. 
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