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KLRD1-expressing natural killer cells predict
influenza susceptibility
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Abstract

Background: Influenza infects tens of millions of people every year in the USA. Other than notable risk groups,
such as children and the elderly, it is difficult to predict what subpopulations are at higher risk of infection. Viral
challenge studies, where healthy human volunteers are inoculated with live influenza virus, provide a unique
opportunity to study infection susceptibility. Biomarkers predicting influenza susceptibility would be useful for
identifying risk groups and designing vaccines.

Methods: We applied cell mixture deconvolution to estimate immune cell proportions from whole blood
transcriptome data in four independent influenza challenge studies. We compared immune cell proportions in
the blood between symptomatic shedders and asymptomatic nonshedders across three discovery cohorts prior
to influenza inoculation and tested results in a held-out validation challenge cohort.

Results: Natural killer (NK) cells were significantly lower in symptomatic shedders at baseline in both discovery and
validation cohorts. Hematopoietic stem and progenitor cells (HSPCs) were higher in symptomatic shedders at baseline
in discovery cohorts. Although the HSPCs were higher in symptomatic shedders in the validation cohort, the increase
was statistically nonsignificant. We observed that a gene associated with NK cells, KLRD1, which encodes CD94, was
expressed at lower levels in symptomatic shedders at baseline in discovery and validation cohorts. KLRD1 expression
in the blood at baseline negatively correlated with influenza infection symptom severity. KLRD1 expression 8 h post-
infection in the nasal epithelium from a rhinovirus challenge study also negatively correlated with symptom severity.

Conclusions: We identified KLRD1-expressing NK cells as a potential biomarker for influenza susceptibility. Expression
of KLRD1 was inversely correlated with symptom severity. Our results support a model where an early response by
KLRD1-expressing NK cells may control influenza infection.
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Background
Influenza is a major public health problem that causes 9
to 35 million illnesses annually in the USA [1]. Children,
older adults, pregnant women, and immunocomprom-
ised patients are at an increased risk of influenza
infection. Within healthy young adults, influenza suscep-
tibility is difficult to predict as responses to influenza
exposure vary from no detectable infection to severe
disease. A better understanding of the immune deter-
minants of influenza susceptibility is necessary to

identify novel high-risk populations and design better
vaccines.
Human influenza challenge studies provide a unique

opportunity to study influenza susceptibility. In these
studies, healthy individuals are inoculated with live influ-
enza virus, and viral shedding titers and self-reported
symptom scores are measured over the course of infec-
tion. Infected individuals fall into four groups: symptom-
atic shedders, asymptomatic nonshedders, symptomatic
nonshedders, and asymptomatic shedders. Previous
challenge studies have used transcriptional data to
distinguish symptomatic shedders from asymptomatic
nonshedders post-infection [2], detect infection prior to
symptom onset [3], develop transcriptional signatures of
symptom status [4, 5], and prototype individualized
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predictors for infection [6]. However, to our knowledge,
no cellular or transcriptional signatures that can predict
infection susceptibility prior to inoculation have been
reported.
Relatively little work has been done examining how

preexisting immune cell populations affect influenza
susceptibility. Wilkinson et al. demonstrated in an H3N2
influenza challenge study that higher baseline levels of
influenza-specific CD4+ T cells in the blood were associ-
ated with reduced viral shedding and less severe symp-
toms [7]. Sridhar et al. followed healthy adults during
two consecutive flu seasons and found that adults with
higher baseline levels of influenza-specific CD8+ T cells
experienced lower symptom severity [8]. To our
knowledge, the role of immune cell frequencies in influ-
enza susceptibility beyond the T cell compartment has
not been described.
Cell mixture deconvolution is an established computa-

tional approach to estimate immune cell proportions
from bulk tissue gene expression data, either from blood
or solid tissue [9]. The key assumption of cell mixture
deconvolution is that the gene expression of a bulk tis-
sue sample can be explained by the underlying ratio of
cell types and the expression profiles of those cell types.
Deconvolution methods define specific cell types using a
reference matrix, known as a basis matrix, of expected
cell type expression. The basis matrix is used by an
algorithm, such as linear regression, to predict the pro-
portion of each cell type in bulk tissue samples. Cell
mixture deconvolution has been used to profile the im-
mune response to leprosy and across cancers [10, 11].
We have described a deconvolution basis matrix, immu-
noStates, that accurately estimates cellular proportions
for 20 immune cell subsets by reducing biological,
methodological, and technical biases [12]. In this study,
we used the immunoStates basis matrix with a linear re-
gression model.
We hypothesized that immune cell populations at

baseline (i.e., prior to exposure to influenza) may affect
influenza susceptibility. To test this hypothesis, we used
4 influenza challenge studies (3 discovery, 1 validation)
composed of 52 samples (40 discovery, 12 validation).
We estimated proportions of 20 immune cell subsets in
each sample using the immunoStates matrix and a linear

regression model. We performed a multi-cohort analysis
of estimated immune cell proportions between symp-
tomatic shedders and asymptomatic nonshedders at
baseline across the three discovery influenza challenge
studies. Symptomatic shedders had lower proportions of
natural killer (NK) cells at baseline in discovery cohorts
and the held-out validation cohort. Symptomatic shedders
had significantly higher proportions of hematopoietic
stem and progenitor cells (HSPCs) at baseline. Although
the validation cohort demonstrated the same trend, it was
not statistically significant. NK cell-associated gene
KLRD1 expression was also significantly lower in the
blood of symptomatic shedders at baseline in discovery
and validation cohorts and correlated negatively with
symptom severity. Increased KLRD1 expression may be
associated with increased proportions of cytotoxic cells, as
KLRD1 expression at baseline correlated with cytotoxic
granule-associated genes CCL5, perforin (PRF1), and
several granzymes (GZMA, GZMB, and GZMH). We also
observed that KLRD1 expression decreased in the blood
during the first 48 h of influenza infection. We examined
KLRD1 expression in the nasal epithelium in human
rhinovirus (HRV) and respiratory syncytial virus (RSV) in-
fection as robust common immune response across
these viruses has been described [13]. KLRD1 expres-
sion significantly increased in nasal epithelium during
infection with HRV or RSV. In an HRV challenge
cohort, symptom severity correlated negatively with
expression of KLRD1 in the nasal epithelium 8 h
post-infection. This data supports a model where a
rapid antiviral response by KLRD1-expressing NK
cells may control viral infection.

Methods
Identification and preprocessing of cohorts
We identified 4 influenza challenge studies consisting of
52 whole blood samples from the NCBI database Gene
Expression Omnibus (GEO) (Table 1). We supplemented
the influenza challenge cohorts with 7 acute viral infec-
tion studies consisting of 16 cohorts of 771 whole blood,
PBMC, and nasal epithelium samples from GEO
(Table 2) [14]. We excluded challenge studies with less
than five asymptomatic nonshedders or five symptom-
atic shedders. We used phenotypic labels as reported by

Table 1 Influenza challenge cohorts

Cohort Group Virus Tissue Asymptomatic
nonshedders

Symptomatic
shedders

Platform Citations

GSE73072 challenge A Discovery challenge H1N1 Whole blood 6 8 Affymetrix [2, 3, 6]

GSE73072 challenge B Discovery challenge H3N2 Whole blood 6 7 Affymetrix [2, 3, 6]

GSE73072 challenge C Discovery challenge H3N2 Whole blood 6 7 Affymetrix [6]

GSE61754 Validation challenge H3N2 Whole blood 5 7 Illumina [5]

Total 2 1 23 29 2
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the original authors. All datasets used were publicly
available (Additional file 1: Supplemental Methods).

Cell mixture deconvolution using immunoStates
We performed cell mixture deconvolution using the
immunoStates basis matrix and a linear regression model,
as described previously, to estimate the immune cell
frequencies for 20 immune cell subsets in blood or nasal
epithelium gene expression data [12]. We removed all cell
types that were not detected in any samples
(Additional file 1: Table S1). If a cell type was detected in a
subset of samples, values of zero were set to an arbitrarily
low number and each sample was rescaled so that the cell
type proportions summed to 100% in each sample.

Integrated multi-cohort analysis of cellular proportions
We performed an integrated multi-cohort analysis using
the MetaIntegrator R package [15]. To analyze differ-
ences in cell proportions, we utilized random effects
inverse variance model-based meta-analysis by combining
effect sizes, as described previously [13, 15, 16]. We esti-
mated the change in proportion for each cell type in each
cohort between symptomatic shedders and asymptomatic
nonshedders as Hedge’s adjusted g. We combined the
changes in cellular proportion for each cell type into a sum-
mary effect size using a linear combination of study-specific
effect sizes, where each cohort-specific effect size was
weighted by the inverse of that cohort’s pooled variance
[15, 17]. We performed multiple hypotheses testing

correction using the Benjamini-Hochberg false discovery
rate (FDR) [18].

Results
Dataset description
We identified four human influenza challenge studies
from the NCBI database Gene Expression Omnibus
(GEO) (Table 1 and Fig. 1) [14]. Each of these studies
profiled the whole blood transcriptome of healthy indi-
viduals inoculated with live H1N1 or H3N2 influenza at
baseline and the subsequent 2–7 days. These studies de-
fined viral shedding status based on influenza laboratory
tests and symptom status based on self-reported modi-
fied Jackson scores [5, 6].
We chose three of the challenge cohorts as discovery

cohorts as they were part of a single study and all pro-
filed samples using Affymetrix microarrays [6]. The
remaining dataset, GSE61754, profiled samples using
Illumina microarrays and was used as a validation cohort
[5]. This choice allowed us to ensure that our deconvo-
lution analysis was robust to the microarray platform
used. We only included baseline samples from subjects
with concordant symptom and shedding status (symp-
tomatic shedders and asymptomatic nonshedders).

Integrated multi-cohort analysis of estimated cell
proportions
We hypothesized that the immune cell profiles of symp-
tomatic shedders and asymptomatic nonshedders would
be different prior to inoculation. To test this hypothesis,

Table 2 Additional viral infection cohorts

Cohort Virus Tissue Controls Acute infection Platform Citations

GSE11348 HRV Nasal scrapings 15 15 Affymetrix [22]

GSE97742 HRV HRV Nasopharyngeal swabs 30 30 Illumina [23]

GSE97742 RSV RSV Nasopharyngeal swabs 38 38 Illumina [23]

GSE97742 RSVco RSV co-infected with
other viruses

Nasopharyngeal swabs 15 15 Illumina [23]

GSE61821 mild H1N1 Seasonal H1N1 Whole blood 36 32 Illumina [40]

GSE61821 mild H3N2 Seasonal H3N2 Whole blood 13 15 Illumina [40]

GSE61821 severe H1N1 Seasonal H1N1 Whole blood 19 16 Illumina [40]

GSE61821 severe H3N2 Seasonal H3N2 Whole blood 6 7 Illumina [40]

GSE61821 pandemic H1N1 Pandemic H1N1 Whole blood 8 10 Illumina [40]

GSE68310 flu Influenza A Whole blood 40 34 Illumina [24]

GSE43777 Dengue PBMC 45 45 Affymetrix [41]

GSE51808 Dengue Whole blood 9 13 Affymetrix [42]

GSE68310 HRV HRV Whole blood 20 20 Illumina [24]

GSE97741 HRV HRV Whole blood 25 24 Illumina [23]

GSE67059 RSV RSV Whole blood 20 65 Illumina [43]

GSE97741 RSV RSV Whole blood 25 28 Illumina [23]

Total 8 4 364 407
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we estimated proportions of 20 immune cell types in
each sample in each cohort using immunoStates and a
linear regression model [12]. We removed 8 out of 20
cell types from further analysis as they were not detected
in at least one dataset (Additional file 1: Table S1). A
multi-cohort analysis of estimated cellular proportions
for the remaining cell types in discovery cohorts using
MetaIntegrator found that proportions of NK cells were
significantly lower (P = 0.012, FDR < 15%; Fig. 2a), and
hematopoietic stem and progenitor cells (HSPCs) were
significantly higher (P = 0.017, FDR < 15%; Fig. 2b) in
symptomatic shedders at baseline. We also observed
significantly lower NK cell proportions at baseline in
symptomatic shedders in the validation cohort (P =
0.045; Fig. 2c). Although the validation cohort exhibited
a trend of higher proportions of HSPCs in symptomatic
shedders at baseline, this increase was not statistically
significant (P = 0.13; Fig. 2d).

Identification of KLRD1 as an NK cell-associated gene
relevant to influenza challenge
A basis matrix in deconvolution defines a set of genes as
a proxy for the presence of a cell type in a sample.
Therefore, a significant reduction in NK cell proportions
suggests that a subset of genes in immunoStates repre-
senting NK cells should be downregulated at baseline in

symptomatic shedders compared to asymptomatic
nonshedders. One of the 19 NK cell-related genes in
immunoStates, KLRD1, was significantly downregulated
in symptomatic shedders in discovery cohorts (summary
ES = − 0.54, P = 0.026; Fig. 3a) and the validation cohort
(P = 3.3e−3; Fig. 3b). In a validation cohort, KLRD1
expression in the blood prior to infection differentiated
between symptomatic shedders and asymptomatic non-
shedders with high accuracy (AUROC = 0.91, 95% CI
0.75–1.0; Fig. 3c). Interestingly, the baseline expression
of KLRD1 was significantly inversely correlated with
total symptom scores (r = − 0.79, P = 5.2e−4; Fig. 3d)
in the validation cohort and was marginally significant
(r = − 0.48, P = 0.07) in one of the two discovery co-
horts where total symptom scores were available
(Additional file 1: Figure S1). This suggests that
KLRD1-expressing NK cells may be important for
controlling influenza symptom severity.

KLRD1 baseline expression correlates with KLRC3 and
cytotoxic granule associated genes
KLRD1 encodes NK cell receptor CD94 that forms a
heterodimer with several NKG2 family members [19].
To determine whether KLRD1 expression was associated
with a particular NKG2 family member, we correlated
KLRD1 expression at baseline with three NKG2 family
member encoding genes: KLRC1, KLRC2, and KLRC3.
Only KLRC3, which encodes protein isoforms NKG2E
and NKG2H, significantly correlated with KLRD1 in the
validation cohort (r = 0.75, P = 1.3e−3; Fig. 4a) and
discovery cohorts (r = 0.4, P = 7.1e−3; Additional file 1:
Figure S2a).
To determine whether expression of KLRD1 was asso-

ciated with a cytotoxic transcriptional signature, we
correlated expression of KLRD1 at baseline with genes
associated with cytotoxic granules. While releasing cyto-
toxic granules, NK cells also release CCL5 [20]. CCL5
expression positively correlated with KLRD1 in validation
(r = 0.78, P = 6e−4; Fig. 4b) and discovery cohorts (r = 0.74,
P = 7.3e−9; Additional file 1: Figure S2b). Perforin (PRF1)
and granzymes (GZMA, GZMB, GZMH) are critical com-
ponents of cytotoxic granules secreted by NK cells to kill
target cells [21]. Expression of each cytotoxic granule gene
was positively correlated with KLRD1 expression at base-
line in the validation cohort (0.57 ≤ r ≤ 0.62, P < 0.03;
Fig. 4c–f ) and in the discovery cohorts (0.76 ≤ r ≤ 0.83,
P < 3e−9; Additional file 1: Figure S2c–f ).

KLRD1 expression decreases in the blood and increases in
the nasal epithelium after respiratory viral infection
KLRD1 expression further decreased in the blood within
the first 48 h of infection in both the discovery (Fig. 5a)
and validation (Fig. 5b) cohorts. One possibility for the
reduction in KLRD1 expression in the blood following

Fig. 1 Schematic of experimental design. From NCBI GEO, we
identified gene expression microarray datasets from influenza viral
challenge studies and studies of naturally acquired infection. Using
immunoStates cell mixture deconvolution, we estimated the immune
cell proportions in each sample. We separated the challenge studies
into discovery and validation cohorts. We analyzed differences at
baseline between symptomatic shedders and asymptomatic
nonshedders using MetaIntegrator, a meta-analysis framework. We
identified immune cell types with significantly different proportions
between symptomatic shedders and asymptomatic nonshedders,
which we further investigated in an influenza challenge validation
cohort, and cohorts of naturally acquired acute infections
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infection is that KLRD1-expressing NK cells are trafficking
to the site of infection. Therefore, we sought to examine
expression of KLRD1 in nasal epithelium during acute
influenza infection. However, no publicly available
studies to our knowledge have profiled human nasal
epithelium expression during influenza infection. We
have previously described a robust common host im-
mune response to acute respiratory viral infection in-
cluding influenza, human rhinovirus (HRV), and
respiratory syncytial virus (RSV) [13]. Therefore, we
utilized a HRV challenge study (GSE11348), and a
cohort of children naturally infected with HRV, RSV,
or RSV co-infected with other pathogens (RSVco)
(GSE97742) [22, 23]. KLRD1 was expressed at signifi-
cantly higher levels in virally infected nasal epithelium
samples (effect size = 0.77, P = 0.0011; Fig. 5c).
In the HRV challenge study (GSE11348), KLRD1 ex-

pression at 8 h post-infection was significantly inversely
correlated with symptom severity (r = − 0.6, P = 0.031;
Fig. 5d) similar to influenza challenge studies. We also
observed significant positive correlations between
KLRD1 expression and expression of KLRC3 (r = 0.82,
P = 6.5e−4, Fig. 5e) and HLA-E (r = 0.76, p = 0.0028,

Fig. 5f ). This data suggests a model where a rapid re-
sponse by KLRD1- and KLRC3-expressing NK cells
with concurrent upregulation of HLA-E by the sur-
rounding tissue may reduce viral infection severity.

HSPCs decrease in the blood during naturally acquired
viral infections
Although the difference in HSPC proportions was not
statistically significant in validation cohort GSE61754,
we observed a trend for higher proportions of HSPCs in
symptomatic shedders at baseline (effect size = 0.79, P =
0.13; Fig. 2d). It was surprising that HSPCs demon-
strated any association with influenza susceptibility, as
very little is known about the role of circulating HSPCs
in acute infection, particularly in humans. Thus, we in-
vestigated changes in HSPC proportions in the blood
during acute viral infection. We extended our analysis
by performing a meta-analysis of estimated HSPC pro-
portions from naturally acquired influenza cohorts with
236 samples. Individuals with acute influenza infection
had consistently lower proportions of HSPCs in the
blood than the control time point (summary effect size
= − 2.0, P < 1e−13; Fig. 6a). To determine whether this
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Fig. 2 Differences in estimated cell type proportions between asymptomatic nonshedders and symptomatic shedders before infection. Immune
cell proportions were estimated at baseline using cell mixture deconvolution. Forest plots of effect sizes of a NK cells (effect size = − 0.85, P= 0.012) and
b HSPCs (effect size = 0.81, P= 0.017) in discovery cohorts. Positive effect sizes indicate higher levels while negative effect sizes indicate lower levels for that
cell type in symptomatic shedders. The x axes represent standardized mean difference between symptomatic shedders and asymptomatic nonshedders,
computed as Hedges’ g, in log2 scale. The size of the blue rectangles is proportional to the SEM difference in the study. Whiskers represent the 95%
confidence interval. The yellow diamonds represent overall, combined mean difference for a given cell type. Width of the yellow diamonds represents the
95% confidence interval of overall mean difference. Violin plots of estimated cell proportions of c NK cells (effect size = − 1.18, P= 0.045) and d HSPCs
(effect size = 0.79, P= 0.13) at baseline in validation cohort GSE61754. NK, natural killer. HSPC, hematopoietic stem and progenitor cells
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was influenza-specific, we performed a meta-analysis of
estimated HSPC proportions from naturally occurring
non-influenza acute viral cohorts. We included six
cohorts of acute dengue, HRV, and RSV infection (339
samples total). We observed a significant decrease in
HSPC proportions in acute non-influenza viral infection
(effect size = 0.5, P < 0.001; Fig. 6b).
We further investigated the dynamics of changes in

HSPC proportions in the blood during influenza
infection using GSE68310, where individuals provided
a baseline healthy sample at the beginning of the flu
season, and returned to the clinic within 48 h of
symptom onset (day 0) [24]. We observed a signifi-
cant decrease in HSPC proportions (p < 0.0001;
Fig. 6c). This decrease in HSPC proportions contin-
ued through day 6, and HSPC proportions returned
to baseline levels by day 21 (Fig. 6c).

HSPC proportions decrease in nasal epithelium over the
course of rhinovirus challenge and correlate with
increases in mDC and M1 macrophage proportions
To study the presence of HSPCs at the site of infection,
we examined HSPC proportions from nasal scrapings of

human volunteers inoculated with HRV (GSE11348)
[22]. HSPC proportions sharply decreased 48 h
post-infection in nasal scrapings (P = 1.3e−5; Fig. 6d).
This decrease could result from trafficking, cell death, or
differentiation of HSPCs into mature myeloid cells. To
test the hypothesis that HSPCs differentiate into mature
cells during viral infection, we correlated the changes in
HSPC proportions with the changes of myeloid dendritic
cell (mDC) and M1 macrophage proportions between
pre-infection and 48 h post-infection. Reductions of
HSPC proportions strongly correlated with increased
proportions of M1 macrophages (r = − 0.84, p = 9.3e−5;
Fig. 6e) and mDCs (r = − 0.84, P = 8.5e−5; Fig. 6f ), both
of which derive from the hematopoietic lineage. This
finding is supported by data derived from a cohort of
children acutely infected with HRV, RSV, or a
co-infection of RSV and other pathogens [23]. We ob-
served in this additional cohort that proportions of
HSPCs during acute infection from nasopharyngeal
swabs negatively correlated with proportions of M1 mac-
rophages and mDCs (− 0.82 < r < − 0.22; 2e−4 < p < 0.24;
Additional file 1: Figure S3). As the samples with the
lowest proportions of HSPCs were the samples with

Standardized Mean Difference (log2 scale)

−2.0 −1.5 −1.0 −0.5 0.0 0.5

H1N1 Challenge A

H3N2 Challenge B

H3N2 Challenge C

Summary

Effect Size=−0.54
p=0.026

KLRD1a
p = 0.0033

8

9

10

11

Asymptomatic
Nonshedder

Symptomatic
 Shedder

K
LR

D
1

Validation − GSE61754 H3N2b

AUC=0.91 (95% CI 0.75−1)
0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False Positive Rate (1−Specificity)

Tr
ue

 P
os

iti
ve

 R
at

e 
(S

en
si

tiv
ity

)

KLRD1
 Validation − GSE61754 H3N2

c

r =  −0.79 
 p =  0.00052

8.5

9.0

9.5

10.0

10.5

0.0 0.5 1.0 1.5

Log Total Symptom Score

K
LR

D
1

Asymptomatic
 Nonshedder
Symptomatic
 Shedder

Validation − GSE61754 H3N2d
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the highest proportions of M1 macrophages and
mDCs, this supports a model where HSPCs differenti-
ate into M1 macrophages and mDCs at the site of in-
fection in humans.

Discussion
Here, we tested a hypothesis that the baseline immune
profile prior to influenza inoculation can predict which
subject will become infected. We applied cell mixture
deconvolution of whole blood transcriptome profiles
from four independent influenza challenge studies.
Symptomatic shedders had lower NK cell proportions
prior to influenza inoculation both in discovery and val-
idation cohorts. Symptomatic shedders had significantly
higher HSPC proportions in discovery cohorts with a
statistically non-significant trend in the validation
cohort. NK cell-associated gene KLRD1 (CD94) was
expressed in the blood at lower levels in symptomatic
shedders at baseline in both discovery and validation
cohorts, which likely reflects differences in NK cell pro-
portions as KLRD1 was one of the genes used in immu-
noStates for estimating proportions of NK cells. Baseline
KLRD1 levels negatively correlated with symptom sever-
ity and positively correlated with expression of cytotoxic

granule-associated genes. Our results support a model
where a rapid response by KLRD1-expressing NK cells
can lessen severity of or may prevent influenza infection.
NK cells are innate immune cells that can recognize

and lyse malignant or virally infected cells [28]. NK cells
express a variety of activating and inhibitory receptors
that lead to a diverse pool of NK cell phenotypes [26].
KLRD1 encodes NK cell receptor CD94, which forms a
heterodimer with an NKG2 family member, and recog-
nizes HLA-E on target cells [26]. Whether the CD94/
NKG2 complex is activating or inhibitory depends on
the NKG2 family member involved. The NKG2 family
includes inhibitory receptors NKG2A and NKG2B,
activating receptor NKG2C, and poorly understood
members NKG2E and NKG2H [19, 25]. NKG2E is
not expressed on NK cell surface [26], whereas NKG2H is
expressed on the surface of a small fraction of human NK
cells [27]. By surveying HLA-E levels on target cells, the
CD94/NKG2 complex is thought to detect general down-
regulation of HLA complexes by viruses or cancer [19].
The CD94/NKG2E receptor complex has been shown

to be essential for mouse survival when exposed to
mousepox [28]. On the other hand, CD94-deficient mice
are not susceptible to mouse cytomegalovirus,

Fig. 4 KLRD1 correlates with KLRC3, and cytotoxic granule-associated genes before infection. Gene expression from validation cohort GSE61754
prior to infection demonstrating correlations between KLRD1 expression and a KLRC3 (r = 0.75, P = 0.0013) and b–f cytotoxic granule-associated
genes: CCL5 (r = 0.78, P = 0.0006), perforin (PRF1, r = 0.57, P = 0.027), granzyme A (GZMA, r = 0.62, P = 0.014), granzyme B (GZMB, r = 0.6, P = 0.018),
and granzyme H (GZMH, r = 0.62, P = 0.013)
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lymphocytic choriomeningitis virus, vaccinia virus,
Listeria monocytogenes, or lethal influenza challenge [29,
30]. Importantly, mouse studies have shown that NK
cells are harmful upon lethal challenge by promoting
excessive lung inflammation, but beneficial during
sublethal influenza challenge by promoting the antiviral
immune response [21, 31, 32]. These observations in
mouse studies further support our results as human
challenge studies are most similar to sublethal mouse in-
fluenza models.
We observed that KLRD1 expression in the blood is

downregulated in symptomatic shedders at baseline and
inversely correlated with symptom severity in a valid-
ation cohort. As KLRD1 expression in the blood reflects
NK cell numbers, this suggests that KLRD1-expres-
sing NK cells are protective against influenza infec-
tion in humans. Furthermore, KLRD1 expression in
the blood correlated with expression of cytotoxic
granule-associated genes: CCL5, perforin (PRF1), and
several granzymes (GZMA, GZMB, GZMH). Thus,
having a higher proportion of NK cells in the blood
may be protective by increasing the proportions of

cells with cytotoxic capabilities. Importantly, our
analysis focused on transcriptome data. These find-
ings should be further confirmed at the protein
level.
The role of KLRD1 (CD94) in influenza susceptibility

cannot be fully understood without considering which
NKG2 family members are involved. Although bulk
transcriptomic data cannot definitively answer this ques-
tion, we correlated expression of KLRD1 with genes en-
coding NKG2 family members known to form dimers
with CD94: KLRC1, KLRC2, and KLRC3. Only KLRC3,
which encodes two poorly understood isoforms, NKG2E
and NKG2H, correlated with KLRD1 expression at base-
line. In mice, the CD94/NKG2E receptor complex is
critical for recognizing and clearing mousepox infection
[32]. Orbelyan and colleagues have shown that while hu-
man NKG2E has functional signaling domains and can
form a complex with CD94 and DAP12, CD94/NKG2E
is located in the endoplasmic reticulum, not the plasma
membrane [30]. Although studies have not yet been
published to address the biological relevance of this ob-
servation, this raises the possibility that human NKG2E
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activates NK cells through an unknown intracellular
pathway or inhibits NK cells by restricting the amount
of DAP12 available at the cell surface. Less is known
about isoform NKG2H, which to the best of our
knowledge, has not been studied functionally in NK
cells. A larger proportion of human T cells express
NKG2H on the cell surface than NK cells, and
co-crosslinking NKG2H with a NKG2H-specific
monoclonal antibody prevents in vitro activation of T
cells through an unknown mechanism [27].
These studies have interesting implications for inter-

preting our finding that KLRD1 is associated with influ-
enza resistance and KLRD1 expression positively
correlates with KLRC3 expression in the blood. Individ-
uals with high levels of KLRD1 (CD94) also have high
levels of KLRC3 (NKG2E or NKG2H) expression. One
interpretation of this observation is that there is a higher
probability of forming CD94/NKG2E or CD94/NKG2H
receptor complexes, based on stoichiometry. These
receptor complexes could lead to influenza resistance
through unidentified signaling pathways that activate
NK cells. However, it is also possible that KLRC3

expression in the blood simply reflects the number of
NK cells present and that KLRD1-expressing NK cells
are protective against influenza using a mechanism inde-
pendent of NKG2E or NKG2H signaling.
We also investigated the temporal expression of

KLRD1 during influenza infection. We observed that
expression of KLRD1 decreased in symptomatic shed-
ders 48 h post-influenza inoculation. Therefore, we hy-
pothesized that KLRD1-expressing cells rapidly traffic to
the site of infection. However, no publicly available data-
set has profiled expression from the respiratory tract of
human influenza patients. Based on our previous report
describing a robust common host immune response to
acute respiratory viral infection including influenza,
HRV, and RSV, we hypothesized that KLRD1 expression
will change in the nasal epithelium of individuals in-
fected with HRV or RSV [13]. In a HRV challenge study,
KLRD1 expression in nasal scrapings 8 h after infection
negatively correlated with symptom severity. KLRD1 ex-
pression also correlated with KLRC3 (NKG2E or
NKG2H) and HLA-E expression. As KLRD1 and KLRC3
encode CD94/NKG2 receptor complexes, these results
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support a model where a rapid response by CD94/NKG2+
NK cells coupled with high expression of HLA-E by
infected target cells leads to rapid viral clearance. In-
creased expression of KLRD1 and KLRC3 in nasal
epithelium samples and reduced frequency of NK
cells in peripheral blood samples are consistent with
our hypothesis that the NK cells are actively recruited
to the site of infection. Alternatively, it is possible
that KLRD1 and/or KLRC3 are upregulated on NK
cells in lungs of patients with respiratory viral infec-
tion or that KLRD1/KLRC3-expressing lung NK cells
proliferate vigorously at that site.
Our results suggest that KLRD1 expressing NK cells

may be protective against influenza. However, this is
undoubtedly only one aspect of influenza susceptibility.
Influenza challenge studies routinely exclude individuals
with existing antibody titers to the challenge strain,
meaning the results may not be directly applicable to in-
dividuals with existing B cell memory responses [3, 5].
CD4+ T cell and CD8+ T cell cross-reactive memory re-
sponses have also been shown to affect influenza infec-
tion susceptibility and severity [7, 8]. Hence, the role of
KLRD1-expressing NK cells within broader immune
system memory must be further studied.
Hematopoietic stem cells (HSCs) have the unique cap-

acity of self-renewal [33]. HSCs differentiate into
hematopoietic progenitor cells (HPCs), with varying
differentiation capabilities. HSCs and HPCs are difficult
to distinguish experimentally and share expression of
the surface marker CD34. Thus, we use the term
hematopoietic stem and progenitor cells (HSPCs) to en-
compass both groups. While HSPCs reside primarily in
the bone marrow, it has been shown in mice that HSPCs
constantly circulate from the bone marrow, through the
blood, into the periphery, and finally through the lymph-
atic system return to the bone marrow [34]. HSPCs ex-
press Toll-like receptors (TLR), such as TLR4 and TLR2,
enabling them to recognize and respond to infection
[35]. In mice, TLR-stimulated HSPCs have been ob-
served to differentiate into myeloid cell types in the per-
iphery, including dendritic cells and macrophages [34].
Our results demonstrate that during acute viral infec-

tion, HSPC proportions decrease in the blood, which
may reflect emergency myelopoiesis, a process by which
hematopoiesis favors the production of myeloid cells at
the expense of the lymphoid compartment to replenish
myeloid cells during infection [36]. HSPC proportions
may decrease in the blood during infection because
HSPCs differentiate into myeloid cells in the bone mar-
row rather than enter circulation. Furthermore, our re-
sults demonstrate that HSPC proportions decrease in
nasal scrapings upon rhinovirus challenge, and the de-
crease in HSPCs correlates with an increase in both M1
macrophages and mDCs. This result supports a model

where human HSPCs take an active role in the immune
response at the site of infection by differentiating into
myeloid cells.
We identified a nonsignificant trend of reduced pro-

portions of HSPCs in asymptomatic nonshedders
prior to influenza exposure. It is possible that the
asymptomatic nonshedders were protected due to a
recent inflammatory event that promoted HSPC dif-
ferentiation into protective M1 macrophages and
mDCs. However, the likelihood of a recent inflamma-
tory event in challenge study participants is low as
subjects are often excluded from a challenge study for
having had a recent flu-like illness [37]. It is also pos-
sible that the difference in HSPC proportions is due
to normal variation observed in the healthy popula-
tion. Further studies are needed to identify factors
driving HSPC proportion variation.
Our study was limited due to our dependence on

publicly available challenge study data. Arguably, the
number of samples in the challenge studies used here
were low. A post hoc statistical power analysis indi-
cated we had sufficient power to detect NK cell and
HSPC immune cell proportion differences [38]. We
only included symptomatic shedders and asymptom-
atic nonshedders in our analysis. It is unclear whether
our results are applicable to symptomatic nonshed-
ders and asymptomatic shedders. Participants across
all challenge studies were healthy young adults. Our
results may not be applicable to children or the
elderly and need to be investigated in these groups.
Furthermore, we only had access to transcriptomic
data. Additional studies should confirm whether
symptomatic shedders have lower proportions of NK
cells at baseline and whether high expression of
KLRD1 in the blood directly correlates with greater
numbers of CD94+ NK cells via flow cytometry.

Conclusions
In conclusion, we identified KLRD1-expressing NK
cells as a novel biomarker for influenza susceptibility.
We found that KLRD1 expression correlated with
expression of cytotoxic granule-associated genes, sug-
gesting that higher KLRD1 expression may correlate
with increased proportions of cytotoxic immune cells.
We showed that higher KLRD1 expression in the
nasal epithelium 8 h after HRV infection was associ-
ated with reduced symptom severity. Our results
imply that an early response by KLRD1-expressing
NK cells may reduce symptom severity and possibly
prevent influenza infection entirely. The seasonal in-
fluenza vaccine has already been shown to stimulate
memory-like NK cell responses in humans [39]. Fu-
ture vaccination strategies may benefit from not only
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targeting B cells and T cells but also enhancing
KLRD1-expressing NK cell responses.
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